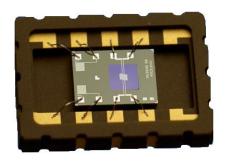


MTCS 2601 - Gas

Micro Thermal Conductivity Sensor for Gas Detection

Applications

Applications are primary industrial process control (binary mixture), horticulture and food storage (CO₂), security (CO₂ monitoring, fire alarm, H₂), natural gas engine or hydrogen engine full cell, detection of refrigerant. This type of device is also used as leakage detection as well as pressure sensor for primary vacuum control following Pirani principle.


Industry

- Determining gas concentration by measuring the thermal conductivity in binary mixture or quasi-binary mixture (H₂, He or CO₂ in air)
- Monitoring of CH₄ concentration in Natural Gas for gas engine control
- Detection of refrigerant gases such as Freons (R-11; R-12,R-21, R-22), CFC or CF₃CH₂F Fluoroethane (R-134 or R-404) for leakage monitoring of cooling System
- Measurement of Hydrogen (0 to 5% or higher), Helium(0 5000 ppm) or Xenon in air
- Security (fire alarm, CO₂ monitoring, explosive gas monitoring)
- Industrial process control, horticulture, food storage, fermentation process Control
- Micro vacuum device as miniature Pirani gauge
- Micro absolute humidity sensor in air based on thermal conductivity

Domestic use

• CO₂ safety monitoring (0-4%) for Security, Fire Alarms or Indoor Air Quality

General description

The MTCS2601 sensors consist of a micro-machined thermal conductivity sensor using four Ni-Pt resistors realized using MEMS technologies. The sensor is mounted in a miniature SMD package, available on tape and real. This MEMS TC sensor, combined with simple low power CMOS standard integrated circuits, is an excellent choice for OEM gas detector requiring ultralow power consumption, long lifetime and no maintenance. This device measures gas concentrations of binary or tertiary gas mixtures or quasi binary mixture in air, such as gas in air with lower thermal conductivity as carbon dioxide, argon or Freon's, or with higher thermal conductivity such as hydrogen, helium or methane.

Features

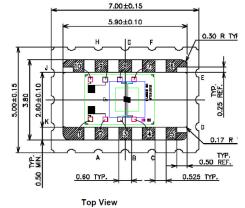
- Robust MEMS physical sensing principle with no chemical reaction, based on gas thermal conductivity variation
- Measuring range from 100 ppm to 100% depending on the application and the thermal conductivity of the gas
- No chemical reactants, linear signal with concentration without hysteresis
- Temperature compensated with excellent matching of compensation and heating resistors on the same silicon die
- Ultra small sensor gas volume such as < 0.1 cm³
- Robust and long MTBF due to physical resistive sensing principles, High shock survivability (>1000 G)
- Ultra-low power sensor consumption in operation (< 8mW) due to the use of MEMS based silicon sensor with large integrated resistors such as 250 Ohms and small heated mass.
- Ultra-fast response time < 50 ms with large electronics bandwidth

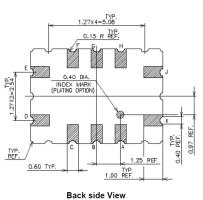
Silicon sensor MTCS2600 characteristics						
	Symbol	Min	Typical	Max	Units	
Sensor electrical characteristics						
Measuring resistor	Rm ₁ and Rm ₂	110	120	135	Ω	
Reference resistor	Rt ₁ and Rt ₂	240	265	300	Ω	
Ratio	$(Rt_1+Rt_2)/(Rm_1+Rm_2)$	2.00	2.20	2.35	-	
Resistor Thermal Coefficient	α	0.0045	0.0050	0.0055	/°K	
Absolute maximum ratings						
Heating current in (Rm ₁ +Rm ₂)	lm		5.0		mA	
Storage condition		-	-	-	-	
Temperature		-40 to +100			°C	
Humidity		0 – 100, non condensing		%RH		
Recommended operating conditions						
Heating current Rm1+Rm2 current		4.5 – 5.5		mA		
Temperature		-40 to +85		°C		
Humidity		0 – 100, non condensing			%RH	
MTBF within recommanded operating condition		30'000		Hours		

Sensor package information

MTCS sensor in SMD package: 7.00 mm x 5.0 mm x 1.50 mm

Pin-out:


 Rt_1 : pin 1 and 2 Rt_2 : pin 9 and 10 Rm_1 : pin 4 and 7 Rm_2 : pin 3 and 8


NC: pin 5 NC: pin 6

Connection:

(1-K); (2-A); (3-B), (4-C) (7-F); (8-G); (9-H); (10-J)

Soldering information: MAX: 250°C, 90 sec

A specific PTFE filter can be added on the grid to avoid risk of water drops or oil drops onto the sensor for dirty environment conditions

Parts exposed to gas: aluminum, bulk silicon, silicon dioxide, silicon nitride, fused quartz, aluminum grid

Ordering information

Part number	Description
MTCS2601	Sensor in LCC package with an anodized aluminum protective grid

Delivery: Tape and Reel 16 mm

NEROXIS

NEROXIS SA | Rue Jaquet-Droz 1 | CH-2002 Neuchâtel | SWITZERLAND Email: kaptadmin.vws@veolia.com | Tel: +41 32 720 57 57 www.neroxis.ch